Adjoint Vector Fields and Differential Operators on Representation Spaces
نویسندگان
چکیده
Let G be a semisimple algebraic group with Lie algebra g. In 1979, J. Dixmier proved that any vector field annihilating all G-invariant polynomials on g lies in the k[g]module generated by the ”adjoint vector fields”, i.e., vector fields ς of the form ς(y)(x) = [x, y], x, y ∈ g. A substantial generalisation of Dixmier’s theorem was found by Levasseur and Stafford. They explicitly described the centraliser of k[g] in the algebra of differential operators on g. On the level of vector fields, their result reduces to Dixmier’s theorem. The purpose of this paper is to explore similar problems in the general context of affine algebraic groups and their rational representations.
منابع مشابه
Error bounds in approximating n-time differentiable functions of self-adjoint operators in Hilbert spaces via a Taylor's type expansion
On utilizing the spectral representation of selfadjoint operators in Hilbert spaces, some error bounds in approximating $n$-time differentiable functions of selfadjoint operators in Hilbert Spaces via a Taylor's type expansion are given.
متن کاملWeighted composition operators on measurable differential form spaces
In this paper, we consider weighted composition operators betweenmeasurable differential forms and then some classic properties of these operators are characterized.
متن کاملBilateral composition operators on vector-valued Hardy spaces
Let $T$ be a bounded operator on the Banach space $X$ and $ph$ be an analytic self-map of the unit disk $Bbb{D}$. We investigate some operator theoretic properties of bilateral composition operator $C_{ph, T}: f ri T circ f circ ph$ on the vector-valued Hardy space $H^p(X)$ for $1 leq p leq +infty$. Compactness and weak compactness of $C_{ph, T}$ on $H^p(X)$ are characterized an...
متن کاملThe Division Method for Subspectra of Self-adjoint Differential Vector-operators
We discuss the division method for subspectra which appears to be one of the key approaches in the study of spectral properties of self-adjoint differential vector-operators, that is operators generated as a direct sum of self-adjoint extensions on an Everitt-Markus-Zettl multi-interval system. In the current work we show how the division method may be applied to obtain the ordered spectral rep...
متن کاملSupercyclic tuples of the adjoint weighted composition operators on Hilbert spaces
We give some sufficient conditions under which the tuple of the adjoint of weighted composition operators $(C_{omega_1,varphi_1}^* , C_{omega_2,varphi_2}^*)$ on the Hilbert space $mathcal{H}$ of analytic functions is supercyclic.
متن کامل